Kelvin = unit of temperature

ABSOLUTE ZERO

- No molecular movement
- 0 K
- Never gotten to zero K
$K=C+273$

We use CELSIUS for thermochemistry!

Specific Heat

How much heat can something absorb?

Specific Heat

The amount of energy it takes to raise the temperature of 1 gram of something by $1{ }^{\circ} \mathrm{C}$

Units:
$\frac{\mathrm{J}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}$

Specific Heat

$Q=m C \Delta T$

$Q=$ energy lost or gained
m = mass
C = specific heat
$\Delta \mathrm{T}=$ "delta" T or change in temp

$$
Q=m \times C \times\left(T_{\text {final }}-T_{\text {starting }}\right)
$$

Positive or Negative?

Gaining Heat	Endothermic	$\Delta \mathrm{T}=+$	$\mathrm{Q}=+$
Losing Heat	Exothermic	$\Delta \mathrm{T}=-$	$\mathrm{Q}=-$

Chart from perspective of the SYSTEM

Showing work...

Couple of choices...

- UNITS:
- Put units IN the math equation
- Make a list of variables and put the units there instead of in the math equation (what Mrs. Farmer likes to do)

$$
5 \mathrm{~J}=(10 \mathrm{~g})\left(0.5 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)(\Delta \mathrm{T})
$$

- ALGEBRA
- Show rearranging your problem once the numbers are in (what Mrs. Farmer likes to do)
- Or show rearranging your equation
$\Delta \mathrm{T}=\frac{\mathrm{Q}}{\mathrm{mc}}$

Specific Heat

$Q=m C \Delta T$

How much heat is needed to raise the temperature of 10 grams of a substance from $40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{Cif}$ the specific heat is $3.8 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{Q}=(10 \mathrm{~g})\left(3.8 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)\left(60-40^{\circ} \mathrm{C}\right) \\
& \mathrm{Q}=(10 * 3.8 * 20)=760 \mathrm{~J}
\end{aligned}
$$

Positive because it is heating up!
It is ENDOthermic!

Positive because it is heating up!
It is ENDOthermic!

Specific Heat

$Q=m C \Delta T$

A 50 grampiece of hot metal is put into cold water. The metal transfers 5000 Jof energy to the cold water. The specific heat of the metal is $6 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What is the change in temperature of the metal?

Negative because it is cooling down! It is EXOthermic!
$-5000 \mathrm{~J}=(50 \mathrm{~g})\left(6 \frac{\mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}\right)(\Delta \mathrm{T})$
(50g) ($\left.6 \frac{\mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}\right)$
(50g) $\left(6 \frac{J}{g{ }^{\circ} \mathrm{C}}\right)$
$(-5000) /(50 * 6)=\Delta T$

$$
=-16.7^{\circ} \mathrm{C}
$$

Negative because it is cooling down! It is EXOthermic!

$(-5000) /\left(50^{*} 6\right)=\Delta T$

$$
=-16.7^{\circ} \mathrm{C}
$$

> Specific Heat $Q=m C \Delta T$

A 2 gram sample of a metal was heated from 260 K to 300 K It absorbed 52 Jof energy. What's the specific heat?
$260 \mathrm{~K}-273=-13^{\circ} \mathrm{C}$
$300 \mathrm{~K}-273=27^{\circ} \mathrm{C}$

Positive because it is heating up! It is ENDOthermic!

$$
\frac{52 \mathrm{~J}}{(2 g)\left(40^{\circ} \mathrm{C}\right)}=\frac{(2 \mathrm{~g})(\mathrm{C})\left(27^{\circ} \mathrm{C}-13\right)}{(2 \mathrm{~g})\left(40^{\circ} \mathrm{C}\right)}
$$

$(52) /\left(2^{*} 40\right)=C$

$$
=0.65 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}
$$

Careful with the double negative!

Positive because it is heating up! It is ENDOthermic!

$(52) /(2 * 40)=C$

$$
=0.65 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}
$$

Careful with the double negative!

